
1. Introduction
Atmospheric rivers (ARs), river-like plumes of intense atmospheric moisture transport (Newell et al., 1992) typi-
cally associated with extratropical cyclones (Zhang et al., 2019), are known for their great socioeconomic impacts 
worldwide. ARs occur less than 10% of the time but account for more than 30% of the annual precipitation over 
some populated mid-latitude regions, such as the West Coast of the United States and Western Europe, which 
indicates both their water resource value and the potential hazards of landfalling ARs (Dettinger, 2013; Slinskey 
et al., 2020). For example, in 2016–2017, a series of AR events terminated a multi-year drought in California 
(White et al., 2019). However, ARs also contribute to more than 84% of flash flood damage in the West Coast 
of the United States (Corringham et al., 2019), which is one of the most costly natural disasters. In addition to 
the local impacts, ARs play an important role in global climate. ARs determine about 90% of pole-ward mois-
ture transport (Zhu & Newell, 1998), which is one potential driver of Arctic amplification through modulation 
of the energy and moisture budgets around polar regions (Nash et al., 2018). Due to the important role of ARs 

Abstract Quantifying the response of atmospheric rivers (ARs) to radiative forcing is challenging due to 
uncertainties caused by internal climate variability, differences in shared socioeconomic pathways (SSPs), and 
methods used in AR detection algorithms. In addition, the requirement of medium-to-high model resolution 
and ensemble sizes to explicitly simulate ARs and their statistics can be computationally expensive. In this 
study, we leverage the unique 50-km large ensembles generated by a Geophysical Fluid Dynamics Laboratory 
next-generation global climate model, Seamless system for Prediction and EArth system Research, to explore 
the warming response in ARs. Under both moderate and high emissions scenarios, increases in AR-day 
frequency emerge from the noise of internal variability by 2060. This signal is robust across different SSPs and 
time-independent detection criteria. We further examine an alternative approach proposed by Thompson et al. 
(2015), showing that unforced AR variability can be approximated by a first-order autoregressive process. The 
confidence intervals of the projected response can be analytically derived with a single ensemble member.

Plain Language Summary An “Atmospheric River” (AR) is a weather phenomenon characterized 
by strong, narrow moisture transport that brings heavy rainfall to land. They serve as a critical water resource 
but also can cause damaging flash floods and high winds. Thus, knowing how AR activity will change in 
the future climate can help us to mitigate potential AR-related disasters and promote effective water resource 
management. However, this task is challenging due to uncertainty in how fast the climate will warm and in how 
much the noise of natural climate variability can obscure the signal from global warming. In addition, several 
different definitions of AR exist, which raises questions about the sensitivity of AR changes to AR definition. 
In this study, we use a next-generation global climate model to evaluate the influence of these uncertainties 
and to determine the time when humanity will notice a discernible change in AR activity. We find that the 
response to global warming can be robustly identified by 2060 across all explored methods of computation. We 
further examine a less expensive approach, which enables us to quantify the uncertainty in warming signals and 
estimate the time of signal emergence in a single realization of nature.
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in weather and climate extremes and the global hydrological cycle, it is imperative to understand how ARs may 
change under global warming and when such a signal may emerge from the noise of internal climate variability.

As the climate warms, it is anticipated that ARs will intensify, as moisture transport increases following the Clau-
sius-Clapeyron equation (C-C equation), which dictates a water vapor increase of about 7% per degree Celsius of 
warming (Held & Soden, 2006)). However, previous studies have demonstrated that the change in AR intensity 
(i.e., integrated water vapor transport (IVT); see next section for definition) can exceed the scaling given by the 
C-C equation at a rate of about 7%–14% per degree Celsius (Gao et al., 2015) with location dependence. This 
difference can be attributed to the dynamical changes in ARs, which are more complicated than the thermody-
namic changes since they are subject to a few different factors, such as the meridional shift of the eddy-driven 
jet (Shaw & Voigt, 2015; Shepherd, 2014), the increase of static stability (i.e., stronger warming aloft) and the 
change in stationary wave patterns (Wills et al., 2019). The change in integrated water vapor transport (IVT) is 
also reflected in the change in AR-day frequency (i.e., number of AR days in a given period at a fixed location). 
Previous research based on analyses of global climate model projections from Phase 5 of the Coupled Model 
Intercomparison Project (CMIP5) has shown that the AR-day frequency will increase by 30%–300% with a slight 
decline in the total number of global ARs in a warmer climate (Gao et al. (2015), Espinoza et al. (2018)). These 
studies also noted that the change mentioned above is sensitive to the definitions of AR-day in different detection 
algorithms.

Although previous studies indicate robust changes to ARs in response to increasing greenhouse gases, the forced 
signal is embedded within a climate system that undergoes substantial multidecadal internal variability. There-
fore, we seek to understand when the signal of forced AR changes may emerge from the noise of internal climate 
variability. One way to address this question is to quantify the time of emergence (ToE), which is defined as the 
point in time when the signal of climate change emerges from the underlying noise of internal climate variability. 
In this study, we especially focus on when the forced response of AR-day frequency is significantly higher/lower 
than that of a chosen reference year (i.e., the first year of the record, see next section for definition). Informally, 
the ToE estimates the timing when societies can expect significant and detectable impacts of the climate change 
(Hawkins & Sutton, 2012; Thompson et al., 2015). An accurate estimation of AR ToE may benefit diverse sectors 
ranging from: water resource management, building design, policy decision making, and disaster preparedness. 
However, the uncertainty of estimating AR ToE may result from several sources in addition to internal climate 
variability, including model and scenario uncertainty and the choice of AR detection algorithm (O’Brien, Payne, 
et al., 2020; O’Brien, Risser, et al., 2020). It is therefore of great importance to examine the degree to which these 
uncertainties affect the ToE of AR changes. This study will especially focus on the uncertainty from internal 
climate variability, shared socioeconomic pathways (SSPs), and the AR detection threshold, which have been 
considered as the major uncertainty sources when studying AR climate change.

While there is no single metric or method for estimating ToE according to the IPCC Fifth Assessment Report 
(IPCC (2013)), all methods require an accurate estimate of internal climate variability, which typically requires 
large ensembles (≥30 ensemble members) with perturbed initial conditions from individual global climate 
models (Deser et al., 2020). In single-model large ensembles, the only process that can cause ensemble spread 
is the internal climate variability. Thus large ensembles provide a means of quantifying the uncertainty in forced 
responses caused by internal climate variability. Thompson et al. (2015) and Li et al. (2017) further proposed a 
computationally efficient way of estimating ToE by using a single ensemble member (or the observed realization 
of nature) with the assumption that the internal climate variability is roughly stationary and can be approxi-
mated by a Gaussian first-order autoregressive process (AR-1). By connecting ToE to t-statistics, their approach 
reconciles the definitions of ToE with a well-defined and widely used metric, which makes the inter-comparison 
of different studies possible. In this study, we leverage the large ensemble data generated by a next-generation 
climate model (see next section for details) developed at National Oceanic and Atmospheric Administration/
Geophysical Fluid Dynamics Laboratory (GFDL) and answer the following questions:

1.  When can we expect that radiatively forced changes in AR statistics will emerge from the noise of internal 
climate variability?

2.  Is AR ToE sensitive to the climate projection scenario or criteria used in AR detection algorithms?
3.  Is the method proposed by Thompson et al. (2015) (i.e., using a single ensemble member for estimating ToE) 

applicable to ARs?
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We first show a general picture of how the AR-day frequency responds as the climate warms in large-ensemble 
simulations by a GFDL next-generation climate model. We then define the AR ToE and test the fidelity of the 
approach proposed by Thompson et al. (2015) and Li et al. (2017). We demonstrate the ToE of AR changes is 
generally insensitive to SSPs or time-independent detection criteria and that increased frequencies of AR occur-
rence due to increasing greenhouse gases emerge from the noise of internal climate variability by the middle of 
the 21st century over most extratropical regions.

2. Data and Methods
2.1. Global Climate Model Large Ensemble

We analyze a 30-member initial-condition large ensemble from the Seamless system for Prediction and EArth 
system Research (SPEAR-LE, Delworth et al. (2020)), which is the GFDL next-generation coupled GCM opti-
mized for the study of seasonal to multidecadal variability, predictability, and projection. SPEAR incorporates 
GFDL's most recently developed atmospheric (AM4), oceanic (MOM6), sea-ice (SIS2) and land (LM4) compo-
nent models. SPEAR shares the same component models as GFDL's CMIP6 model, Global Climate Model 
version 4 (CM4, Held et al. (2019)), but with configuration and physical parameterization choices optimized for 
climate prediction and projection from seasonal to multidecadal timescales. The version of SPEAR we analyze 
here has horizontal resolution of 0.5° in the atmosphere and land components and 1° in the ocean and sea ice 
components. The 0.5° atmosphere resolution is unprecedented for available coupled GCM large ensembles and 
provides a unique opportunity for investigating the role of internal variability in the projected changes of atmos-
pheric extreme events, including ARs. Previous research has examined ARs in SPEAR and AM4 showing its 
capability of reproducing the observed climatology, including frequency, numbers and geometry (Zhao, 2020). 
In addition, SPEAR also shows the capability of forecasting multiseasonal AR activity and capturing interannual 
variability in the present climate (Tseng et al., 2021), which gives us additional confidence for projecting future 
AR activity.

In this study, we examine simulations with historical forcing, natural forcing, and projected forcing following 
two SSPs: SSP2-4.5 and SSP5-8.5. The historical simulation follows the observed radiative forcing from 1921 
to 2014, while the all-natural forcing simulation, which can be considered as the control simulation, contains the 
same radiative forcing but with anthropogenic greenhouse gases excluded. The all-natural forcing simulation 
is only used to provide a reference state and to confirm that all significant trends are not caused by climato-
logical drift in SPEAR; the natural forcing results are shown in Supporting Information S1. The SSP2-4.5 and 
SSP5-8.5 pathways represent “middle of the road” and “upper end” of anthropogenic greenhouse gas emissions 
scenarios, respectively, and cover the period of 2014–2100. For the 30 ensemble members, the initial conditions 
were chosen from a long control simulation with 20-year spacing to sample different phases of internal climate 
variability. SPEAR large ensemble data is described further and available at: https://www.gfdl.noaa.gov/spear_
large_ensembles/. The pre-processed data used in this study is stored at: https://doi.org/10.5281/zenodo.6366550.

2.2. Observational Data

The European Centre for Medium-Range Weather Forecasts reanalysis (ERA5, Hersbach et al. (2020)) from 1995 
to 2018 is used as the observational reference. The selection of the period is due to the availability of satellite 
observation to constrain the moisture field. The ERA5 data, including wind and specific humidity, are interpolated 
from their 30-km resolution native grid to the same common grid as SPEAR (0.5° and daily temporal resolution) 
before applying the AR detection algorithm to the data (see next section for details). ERA5 is published within 
3 months of real time and is available at: https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset.

2.3. AR Detection

ARs are identified with a detection algorithm (Mundhenk et al., 2016) that tests if the gridded IVT meets a set of 
criteria regarding intensity (85% or 94% of the global domain in historical simulation) and geometry (>1,400 km 
in length and with an aspect ratio ≥1.4). The IVT is defined as:

IVT =
1

𝑔𝑔

√

(

∫
250

1000

𝑞𝑞𝐯𝐯𝑑𝑑𝑑𝑑

)2

 (1)
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where g, q, v and p are gravitational acceleration, specific humidity, horizontal wind and pressure coordinate 
respectively. We remove the first three harmonics of the IVT calendar day means (over the historical period) for 
each grid point to compute the anomaly field. To examine the sensitivity of ToE to the AR intensity criteria, we 
apply the detection algorithm to IVT anomalies with two different thresholds: 85% and 94%. The thresholds are 
defined by aggregating the global IVT over the entire historical period and ensemble members and calculating the 
85% and 94% percentiles. These two criteria represent a reasonable range that spans most of the threshold criteria 
range used in previous research (Zhao, 2020). Each IVT map is scrutinized independently and a daily AR mask is 
generated (0 for non-AR and 1 for AR days for a given grid cell). The seasonal AR-day frequency for a grid cell 
is then defined as the number of AR days that are labeled in a given season. The detection algorithm is available 
at: https://mountainscholar.org/handle/10217/170619.

In addition to the Mundhenk et  al.  (2016) method, we also test two other detection algorithms, Toolkit for 
Extreme Climate Analysis, Bayesian AR Detector (TECA-BARD, O’Brien, Payne, et al. (2020), O’Brien, Risser, 
et al. (2020)) and Tempest (Ullrich and Zarzycki (2017); O’Brien et al. (2021)). Different from the fixed IVT 
thresholds used in Mundhenk et al. (2016), TECA-BARD and Tempest have a relative/time-dependent threshold. 
TECA BARD has a percentile threshold P that constrains AR area coverage to be no larger than approximately 
1 − P, and since most of the ARDTs run within TECA-BARD have P = 0.95 (posterior probability based on 
subjective expert knowledge), the maximum area covered is typically close to 5%, in historical simulations and 
SSPs simulations, as described by O’Brien et al. (2021). On the other hand, Tempest implements a Laplacian 
operator to identify the local maximum of IVT. Here we test two thresholds in Tempest, −10,000 kg m −1s −1 rad −2 
and −3,000 kg m −1s −1 rad −2, which are roughly equivalent to 300–100 kg m −1s −1 difference in IVT from the 
core of an AR to its environment, respectively. One should note that the use of time-dependent thresholds can 
automatically remove the effect of increased background moisture caused by global warming, because the IVT 
threshold is defined by percentile calculated in space rather than in time. O’Brien et al. (2021) found that the ARs 
detected by these two algorithms behave differently from other algorithms in a warmer climate (see discussion 
in Section 3.4). While the main focus is the fixed IVT threshold used in Mundhenk et al. (2016), we also discuss 
ToE sensitivity to these different algorithms and the impact of time-dependent thresholds in Section 3.4.

2.4. Estimating the Time of Signal Emergence (ToE)

While there is no single metric for estimating ToE, the most widely-used definition is the time when the ratio of 
the signal from forced response to the noise from the internal climate variability exceeds a predefined threshold. 
In this study, we especially focus on the timing when the anthropogenically forced response is significantly 
greater or smaller than the forced response from a reference year. For example, considering the case where the 
deviation of AR seasonal frequency from a reference year (i.e., 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡

 , where nt is the time step) is determined by 
two components:

𝑥𝑥𝑛𝑛𝑡𝑡
= 𝑓𝑓 (𝑛𝑛𝑡𝑡) + 𝜉𝜉𝑛𝑛𝑡𝑡 (2)

where f(nt) is the forced response of AR-day frequency and 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 is the contribution from internal climate variability 
(i.e., unforced component). Since we are interested in when the trend in AR-day frequency is significantly differ-
ent from 0, it is equivalent to the timing when the null hypothesis H0: f(nt) = 0 is rejected at a certain confidence 
level. The corresponding confidence interval (CI) is:

CI = 𝑓𝑓 (𝑛𝑛𝑡𝑡) ± 𝑒𝑒𝑛𝑛𝑡𝑡 (3)

where 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 is the spread of the forced response. In an ideal case, 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 will be 0 if 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 is decorrelated with f(nt). 
However, in a short time period, the internal climate variability can project onto the trend, which can obscure 
the forced response. One way to estimate f(nt) is with the ensemble mean from a large ensemble of radiatively 
forced global climate simulations, with the assumption that the ensemble size is large enough to sample the 
different realizations of internal climate variability. Then the CI can be determined by regressing detrended 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡

 
from each ensemble member onto f(nt) (see Supporting Information S1 for details). Note that considering the 

forced response in the context of specific values of the natural variability (i.e., 𝐴𝐴 |

𝑓𝑓(𝑛𝑛𝑡𝑡)
std(𝜉𝜉𝑛𝑛𝑡𝑡 )

| ≥ 𝑛𝑛 , n is a positive integer 
and 𝐴𝐴 std

(

𝜉𝜉𝑛𝑛𝑡𝑡

)

 is the standard deviation of ensemble spread) is not the same criteria as considering when f(nt) is 

https://mountainscholar.org/handle/10217/170619
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significantly different from 0. The former tends to overestimate the ToE because it is a more difficult criterion to 
achieve (see discussion in Li et al. (2017)).

Because generating the large-ensemble simulations is computationally expensive, Thompson et al. (2015) and 
Li et al. (2017) further proposed an alternative approach that can be applied to a single climate realization. They 
model the total change of 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡

 as an AR-1 process superimposed on an external forcing:

𝑥𝑥𝑛𝑛𝑡𝑡
= 𝑓𝑓 (𝑛𝑛𝑡𝑡) + 𝛼𝛼𝑥𝑥𝑛𝑛𝑡𝑡−1 + 𝜖𝜖𝑛𝑛𝑡𝑡 (4)

where 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡
 and f(nt) are identical to the definitions given in Equation  2, α is the lag-1 autocorrelation of the 

detrended x and 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 is random white noise at nt. In this formula, f(nt) is predetermined by a parametric fitting (e.g., 
linear trend or 2nd order polynomial) or the ensemble mean from anthropogenically forced climate simulations.

Following Thompson et al. (2015), if the detrended data is well modeled by an AR-1 process, the 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 in Equation 3 
can be estimated based on t-statistics as follows,

𝑒𝑒𝑛𝑛𝑡𝑡 = 𝑡𝑡𝑐𝑐𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠 (𝑛𝑛𝑡𝑡, 𝑟𝑟1) 𝑔𝑔 (𝑛𝑛𝑡𝑡) (5)

where

𝛾𝛾 (𝑛𝑛𝑡𝑡, 𝑟𝑟1) ≡
{

(𝑛𝑛𝑡𝑡 − 2) ∕

[

𝑛𝑛𝑡𝑡

(

1 − 𝛼𝛼

1 + 𝛼𝛼

)

− 2

]}1∕2

 (6)

and

𝑔𝑔 (𝑛𝑛𝑡𝑡) ≡
√

12

𝑛𝑛3
𝑡𝑡
− 𝑛𝑛𝑡𝑡

 (7)

In Equation 5, tc is the t value for the desired CI and s is the standard deviation of detrended values of 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡
 . γ(nt, r1) 

is the function which accounts for the effect of memory in detrended data, where α is the lag-1 autoregression of 
detrended x and g(nt) accounts for the degrees of freedom. For example, if the detrended 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡

 has internal climate 
variability with long memory (large r1), γ(nt, r1) tends to be large, suggesting the influence of noise can last longer 
and modulate 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡

 in the following time steps. On the other hand, like the reduced spread of t-distribution with 
the increase of sample size, g(nt) and 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 are reduced when we use more data (i.e., bigger nt) to model the under-
lying distribution of detrended 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡

 . The derivations of Equations 3–7 can be found in the appendix of Thompson 
et al. (2015). In this study, we focus on December–February (DJF) averaged AR statistics and each time step 
represents one season with 1-year spacing to the next time step.

3. Results
3.1. Changes in AR-Day Frequency and Numbers

We first illustrate the epoch difference–that is, the difference between the average values of a time series from 
two selected windows (e.g., 2015–2100 minus 1921–2014), and the time evolution of DJF AR-day frequency in 
the two warming and the historical simulations. The left column of Figure 1 shows the AR-day frequency as a 
function of time and location (diamond marks in the middle column) based on the 94% IVT threshold and the 
right column shows the AR numbers in given regions (red boxes in the middle column). The selection of the four 
locations (diamond marks) is based on the large amplitude of AR-day frequency change in response to global 
warming, while the regional average shows similar features but with a smaller amplitude (not shown). The shad-
ing is the range of two standard deviations of the ensemble spread and the color scatters are the ensemble means 
from the SPEAR historical, SSP2-4.5, and SSP5-8.5 simulations. We also include ERA5 data (black scatters) as 
an observational reference. The AR-day frequency from ERA5 is generally bounded within the range of 2 stand-
ard deviations of the ensemble spread, showing the capability of SPEAR in reproducing the observed climatol-
ogy. The middle column shows the epoch difference between the historical and two warming simulations. Most 
regions show an increase in AR-day frequency under both SSPs, especially in the vicinity of the extratropical 
storm tracks.
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According to the left column of Figure 1, the increase in AR-day frequency ranges from near 0 (e.g., North Amer-
ica) to ∼300% (AR-day frequency rises from around 12% in 1921 to 36% in 2100 over the Southern Ocean) for 
SSP5-8.5. This increase is similar in spatial pattern but about half the amplitude for SSP2-4.5. For global-mean 
values, the frequency increases by ∼80% for SSP5-8.5 and ∼40% for SSP2-4.5. This result is qualitatively 
consistent with previous studies (Espinoza et al., 2018), which showed the increase in AR-day frequency due to 
the increase of atmospheric moisture approximately following C-C scaling. However, the change in amplitude is 
slightly different from the values suggested by Espinoza et al. (2018) (∼50%). This difference may result from 
the different periods for the analysis as well as the threshold in detection algorithms. For example, their historical 
period is defined from 1979 to 2002 and the warming period is defined from 2079 to 2096. If we use the same 
period for analysis, the global mean AR-day frequency increases by ∼73% for SSP5-8.5 and ∼39% for SSP2-4.5, 
which is closer to the value given by Espinoza et al. (2018). We also show the result based on 85% IVT threshold 
in the appendix (Figure S2 in Supporting Information S1). In general, the change in AR-day frequency is similar 
to but smaller than that based on the 94% IVT threshold. This also suggests some sensitivity of change in AR-day 
frequency due to the AR detection threshold.

Regarding the total number of ARs, most regions show an increasing trend (right column of Figure 1) while 
the change in the Southern Ocean is not monotonic, reaching its maximum around 2070 for both SSP2-4.5 and 

Figure 1. Left Column: Time series of the December–February (DJF) atmospheric river (AR)-day frequency (AR days/day) in the three Seamless system for 
Prediction and EArth system Research simulations and observations from four chosen locations (diamond marks in the middle column). The color scatters are the 
ensemble mean from the historical (gray), SSP5-8.5 (red), and SSP2-4.5 (blue) simulations and from ERA5 (black). The shading shows the range of 2 standard 
deviations of the ensemble spread from historical (gray), SSP5-8.5 (red) and SSP2-4.5 (blue). Right Column: The same as left column except for the DJF AR numbers 
in the four specified domains (red boxes in the middle column). Middle Column: The epoch difference of AR-day frequency between the warming (top: SSP5-8.5, 
bottom: SSP2-4.5) and the historical simulations. The warming simulation is averaged over the periods of 2015–2100 and the historical simulations is averaged over the 
periods of 1921–2014. AR definition uses the the 94% integrated water vapor transport threshold. Regions without hatching indicate the change in AR-day frequency is 
statistically significant at 5% level based on a t-test.
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SSP5-8.5. This result contrasts most previous studies that suggest a slight decline in projected global AR numbers 
(Zhao, 2020). There are two possible explanations. First, Shields and Kiehl (2016) found the number of strong 
and long-lived ARs tends to increase in a warmer climate, while the short-lived ARs show an opposite trend. The 
94% IVT intensity criterion is around the higher end among all detection algorithms, suggesting the detected ARs 
in our study are more likely to be stronger ones. Second, Shields and Kiehl (2016) and Zhao (2020) also note that 
the ARs become larger as the specific humidity increases in the atmosphere due to global warming, given that 
the IVT criterion is sensitive to changes in background specific humidity. This phenomenon further leads to  the 
decline in AR number because bigger ARs tend to aggregate into a non-filament structure. The non-filament 
structure of AR is less likely to pass the geometry test in detection algorithms, which also leads to a decline of 
AR numbers (see Figure 10 in Zhao (2020)). These explanations are supported by Figure S2 in Supporting Infor-
mation S1 where we use a lower IVT threshold (85%) in the detection algorithm. In the right column of Figure S2 
in Supporting Information S1, except for North America where historical AR occurrence is lower, other regions 
all show a decline in AR numbers as the climate warms, indicating AR numbers have reached the maximum in 
these regions. We also find similar non-filament AR structures as identified by Zhao (2020) (figure not shown) 
suggesting that the AR numbers over different climate states are sensitive to the IVT threshold in AR detection 
algorithms and might not be a well-defined variable when studying climate change. Thus, we will focus on 
AR-day frequency in the following analysis.

Figure 1 provides a general picture of how the ensemble mean AR-day frequency changes in a warmer climate–
that is the “signal” part of warming response. It is also intriguing to understand how the “noise” (i.e., internal 
climate variability) changes with time, which is relevant both for likelihood of more extreme changes and for 
determining the AR ToE. Figure 2 shows the ensemble spread of AR-day frequency as a function of time (left 
column) and the histograms of ensemble spread shown on the left column (right column). The maps in the middle 
column show the difference in median values of the histograms between warming and historical simulations. In 
Figure 2, a few interesting features can be observed. First, the ensemble spread increases as the climate warms 
and the increasing amplitudes are comparable between SSP5-8.5 and SSP2-4.5 (left column). To support this, we 
evaluate if the model spread significantly increases from the historical simulation to the two warming simulations 
and if the difference between two warming simulations is significant. Here we use a bootstrapping analysis to 
determine the distribution that could arise from sampling variability. Specifically, we randomly draw two values, 
either from the historical simulation or from the SSP5-8.5 simulation (50% chance), and calculate the difference. 
By repeating this process 1,000 times, we can approximate the distribution of model spread difference based on 
random sampling and determine if the median values of model spread significantly increase from the historical 
simulation (gray histograms in Figure 2) to the SSP5-8.5 simulation (red histograms in Figure 2). The result in 
Figure 2 is based on a two-tailed test at the 5% significance level. We also apply the same analysis to the two 
warming simulations and test if the ensemble spread from the two warming simulations is significantly different 
from each other.

In the middle column of Figure 2, the color shading indicates the following two criteria are both satisfied: (a) the 
median values of ensemble spread from SSP5-8.5/SSP2-4.5 are significantly higher than that of the historical 
simulation and (b) the median values of ensemble spread from the two warming simulations are not significantly 
different from each other. Over the four targeted regions, the increase in ensemble spread in the warming simu-
lations is indeed significant, but the differences in spread between the SSP5-8.5 and SSP2-4.5 simulations are 
not. These findings support the visual impression of the middle column of Figure 2, which shows widespread 
regions around the globe with increased internal AR climate variability, especially the mid-latitudes, implying 
the increased chance of experiencing AR extremes. Similar features are observed when the 85% IVT threshold is 
used (Figure S3 in Supporting Information S1) except that the AR spread increase is lower in amplitude and the 
difference is only significant in a more confined area over the globe.

To briefly summarize the findings illustrated in Figures 1 and 2, both the ensemble mean and ensemble spread 
of AR-day frequency in SPEAR increase as the climate warms. These features are qualitatively insensitive to 
SSPs or AR detection criteria, but the increases in the modest SSPs (SSP2-4.5) and for the weaker IVT threshold 
for AR detection (85% IVT threshold) are lower in magnitude. In the next section, we will apply the approach 
proposed by Thompson et  al.  (2015) to AR-day frequency trends and explore how the competing factors of 
stronger signal and noise with time influence the estimation of AR ToE.
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3.2. Estimating ToE in the SPEAR Large Ensemble

In this section, we estimate the AR ToE in the SPEAR large ensemble and examine the approach proposed by 
Thompson et al. (2015). According to Section 2.4, the CI in Equation 3 is determined by projecting 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡

 from each 
ensemble member onto the forced response, f(nt), which is the ensemble mean (see Supporting Information S1). 
The assumption here is that the ensemble size is big enough to sample different phases of internal climate 
variability and to remove 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 in Equation 3. In addition, we also examine the approach proposed by Thompson 
et al. (2015) and analytically derive the CIs based on Equations 4–7. To compute the ToE based on the method of 
Thompson et al. (2015), we need to decide the functional form of f(nt) first. According to Li et al. (2017), there 
are numerous ways to determine f(nt) in Equation 3, such as using linear regression or 2nd order polynomial 
fitting. A proper selected function will closely follow the ensemble mean. In addition, to connect the CIs of the 
forced response with t-statistics, the residual should be well modeled by an AR-1 process (i.e., Gaussian process) 
and the f(nt) from each ensemble member is bounded within the desired CIs based on predetermined t-statistics 
according to Thompson et al. (2015).

Figure 3 illustrates the CIs based on large ensemble simulations and the method of Thompson et al. (2015) with 
the use of a 2nd order polynomial fitting for f(nt) at the 4 chosen locations specified in Figure 1. The left column 
corresponds with SSP5-8.5 and the right column with SSP2-4.5. The dashed lines are the ensemble average of 
f(nt) from each member and the shading shows the analytically derived CIs (i.e., 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 ). One should notice that we 

Figure 2. Left Column: The time series of December–February (DJF) ensemble standard deviations of atmospheric river (AR)-day frequency for the 30 Seamless 
system for Prediction and EArth system Research ensemble members from the historical simulation (black), SSP5-8.5 (red) and SSP2-4.5 (blue). The four chosen 
locations are shown as diamond marks in the middle column. Right Column: The histograms of the DJF AR ensemble standard deviations in the left column from 
the historical simulation (black), SSP5-8.5 (red) and SSP2-4.5 (blue). Middle Column: Difference in median values of histograms in the right column between the 
warming and the historical simulations. Regions without hatching indicate the following two criteria are both satisfied: (a) the median values of ensemble spread from 
SSP5-8.5/SSP2-4.5 are significantly higher than the historical simulations and at the 5% level. (b) the median values of ensemble spread from two warming simulations 
are not significantly different from each other.
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assume the ensemble average of f(nt) is the best approximation of the forced response while it can be replaced 
with f(nt) from any single member with a small change in the derived CIs (results not shown). The box plots show 
the ensemble distribution of f(nt) at each 10-year interval calculated directly from the large ensemble data (see 
Supporting Information S1 for details). The number in the title of each subplot shows the percentage of ensemble 
members falling outside the analytically derived CI. These values are generally around and less than the expected 
5%, indicating that the uncertainty caused by internal climate variability is well modeled by an AR-1 process. 
The other evidence is that the range of f(nt) derived from each ensemble member (i.e., the error bars for the box 
plots) ties closely to the analytically derived CI and tapers off from 1921 to 2100. The conclusion holds for the 
SSP2-4.5 simulation as well. In Figure S4 in Supporting Information S1, we also include the results based on 

Figure 3. The forced trend of December–February atmospheric river-day frequency (i.e., f(nt)) from the four chosen locations indicated in the middle column of 
Figure 1. The dashed curves are ensemble mean and the shading is the analytically derived confidence intervals (CIs) (Equation 3). Here we choose two-tailed 95% CIs 
(ts ∼ 2.26 for 30 ensemble members). The box plots are the forced response derived from each ensemble member (see Supporting Information S1) at the given year. The 
number in the title shows the percentage of ensemble member that fall outside the analytically derived CIs. In this figure, we use 2nd order polynomial fitting for f(nt). 
The left column is from SSP5-8.5 and the right column is from SSP2-4.5.
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a linear trend. With a linear fit, more members fall outside the CIs than in Figure 3, indicating that a 2nd order 
polynomial is a more appropriate model. The result suggests that as long as the parametric fitting for f(nt) is prop-
erly selected, we can model internal AR climate variability as an AR-1 process and estimate the AR ToE with a 
single ensemble member.

While the above analysis is based on the assumption that s in Equation 5 is roughly stationary in time, one might 
wonder if the conclusion is still valid when we consider s as a function of time. In Figure S5 in Supporting Infor-
mation S1, we illustrate the result when we replace a constant s with 10-year forward running averaged s(nt). For 
example, to calculate the 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 in the year of 1931, we only use the detrended 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡

 from 1931 to 1940 to calculate s. 
For the year later than 2091, we use the rest of the data. In Figure S5 in Supporting Information S1, it is evident 
that the conclusion generally holds except with fewer ensemble members falling outside the CI. The reason that 
Figures 3 and S5 in Supporting Information S1 exhibit only small differences is because the increase of ensemble 
spread (left column of Figure 2) is much smaller than the increase of the trend (left column of Figure 1). Thus, 
even though the AR internal climate variability increases with time, its contribution to uncertainty of the forced 
response (i.e., 𝐴𝐴 𝐴𝐴𝑛𝑛𝑡𝑡 ) is still negligible.

3.3. AR Time of Emergence

The results in the previous section suggest that for the purpose of calculating the uncertainty of AR trends and 
ToE, the role of internal variability in a large ensemble of warming simulations can be quantified to a high degree 
of accuracy from the statistics of unforced variability. In this section, we follow the calculation in Figure 3 by 
using the 2nd order polynomial for f(nt) (average over all members) and CIs based on Equation 3. We further 
explore the robustness of AR ToE estimates by evaluating the sensitivity of AR ToE to SSPs and AR detection 
criteria. Figures 4a–4d show the maps of AR ToE from the two different warming simulations and two IVT 
criteria used in the AR detection algorithms (left column), where the ToE is defined as the nt when the null 
hypothesis Ho: f(nt) = 0 is rejected at the 5% level. We also demonstrate the difference between these maps in 
the right column of Figure 4. Here we choose 2nd-order polynomial fitting for f(nt) while the result based on 
ensemble mean is nearly identical, as suggested in the previous section (figure not shown). Figure 4 reveals a 
few interesting features. First, in most extratropical oceans, the AR-day frequency changes emerge from internal 
variability before 2060 regardless of the SSPs or the IVT criteria, while some regions, such as the Southern 
Ocean, show signal emergence as early as 2020 (dark red shading). This indicates that if we were to have reliable 
AR observations extending back to 1921, we would expect that the AR-day frequency changes over much of the 
Southern Ocean would stand out clearly above the noise of internal climate variability. The second feature is that 
the AR ToE sensitivity to SSPs and IVT threshold is relatively small (generally ≤20 years), which indicates the 
estimation of AR ToE is quite stable, at least in this model. Only a few regions around the subtropical oceans have 
differences greater than 20 years (black contours in Figures 4e–4g).

While the above analyses focus on DJF, we also investigate all other seasons and show the result in Figure 5. In 
general, the conclusion that the estimated ToE is not sensitive to SSP scenarios or the chosen IVT threshold is still 
valid. Another interesting feature is that the AR-day frequency has a more significant increase and earlier ToE 
in the summer than in the winter. This feature is especially clear on the poleward flank of the storm track. One 
possible reason is that the poleward shift of AR geometry center is more evident during the summer (figure not 
shown). While this might be the case, it does not necessarily indicate that the center of storm track (i.e., regions 
with maximum eddy kinetic energy) significantly shifts poleward. Instead, it might reflect the fact that a more 
significant increase in summer IVT over higher latitudes. This statement can be justified in the later part of this 
section where we repeat the same analysis for IVT without applying any AR detection algorithm. The reason for 
more robust increase in summer AR is not clear at this moment and the mechanisms responsible for this feature 
will be explored in the future study.

The reasons for a stable estimation of AR ToE between two warming simulations and between two IVT thresh-
olds are quite different. The low sensitivity to SSPs results from much of the AR signal emergence occurring 
within several decades of the historical period (generally before 2060), which provides a limited time for the 
different SSPs to diverge prior to ToE. Consistently, the areas with the largest ToE sensitivity to SSPs, such as the 
subtropical regions (black contours in Figure 4e), have the latest ToE. The limited sensitivity to IVT threshold for 
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the AR definition results from similar behavior in the AR-day frequency changes under increasing greenhouse 
gases relative to the baseline climatology, despite large sensitivity of the AR climatology to IVT threshold.

Given the robust emergence of forced response in ARs by the late 21st century over most regions, one might 
wonder if similar ToE features can be found in IVT since the most extreme IVT over the extratropics is usually 

Figure 4. Left Column: the time of emergence (ToE) of atmospheric river (AR)-day frequency changes from (a) SSP5-8.5/94% integrated water vapor transport (IVT) 
threshold (b) SSP2-4.5/94% IVT threshold (c) SSP5-8.5/85% IVT threshold and (d) SSP2-4.5/85% IVT threshold. The ToE is defined as the nt when Ho: f(nt) = 0 is 
rejected at the 5% significance level. We only show the regions with December–February AR-day frequency ≥2% (AR days/days) in the last 10 years of simulations 
(2090–2100). Right Column: The difference corresponding to each panel on the left side: (e) SSP2-4.5/94% IVT threshold minus SSP5-8.5/94% IVT threshold (f) 
SSP5-8.5/85% IVT threshold minus SSP5-8.5/94% IVT threshold (g) SSP5-4.5/85% IVT threshold minus SSP5-8.5/94% IVT threshold. White-dashed contours are 
regions with difference greater than 20 years.
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associated with ARs. Here we repeat the same analysis but for extreme IVT, defined as the 95th percentile of 
seasonal IVT. Specifically, we aggregate the daily IVT from all ensemble members over a given season and find 
the 95th percentile. Each grid point is scrutinized independently, and the time series of extreme IVT is analyzed 
in the same way that we analyze the AR-day frequency. Since no AR detection algorithm is applied, the spatial 
coherence (i.e., filament structure) of high IVT regions is not required. This analysis enables us to explore the 
intensity changes of the most extreme IVT in a warmer climate without the geometry constraints that characterize 
ARs. Figure 6 illustrates the ToE of extreme daily IVT. In general, the top 5% IVT shows similar ToE features as 
those shown in Figures 4 and 5 where the storm track regions have the earliest ToE and the summer hemisphere 
emerges earlier than the winter hemisphere. This result supports that the change in AR-day frequency reflects the 
change in the amplitude of the most extreme IVT.

The above analysis suggests that some populated mid-latitude regions, such as the West Coast of North America 
and Western Europe, might detect significant changes in AR statistics within the next few decades. These regions 
are located near or within the climatological storm tracks, and so the robust AR response likely reflects the 
thermodynamic effect of increased moisture within the saturated moisture plumes that characterize ARs and that 
preferentially follow the storm tracks (O’Gorman and Schneider (2009)). This result might especially be of great 
interest to regions like California, where most of the annual precipitation is determined by AR occurrences in a 
narrow window of the year, and the difference between wet and dry years is typically due to the occurrence or 
absence of a few big winter storms (Dettinger, 2013). A previous study (Gershunov et al., 2019) has documented a 

Figure 5. The atmospheric river-day frequency time of emergence for four different seasons, two warming scenario simulations and two detection thresholds. From top 
to bottom are December–February (DJF), March-May (MAM), June-August (JJA) and September-November (SON) respectively. From left to right are SSP5-8.5/94%, 
SSP2-4.5/94%, SSP5-8.5/85% and SSP2-4.5/85%. The first row is identical to the left column of Figure 4.
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projected increase in both year-to-year annual precipitation variability and extreme precipitation associated with 
ARs. These results are consistent with our finding, while our ToE analysis further provides a timeline that may 
aid mitigation and adaptation measures.

3.4. Sensitivity of AR ToE to Time-Dependent Thresholds

While the preceding analysis focuses on the AR detection method of (Mundhenk et al., 2016), which uses station-
ary IVT thresholds based on the historical record, we now consider alternative methods for AR detection. Previ-
ous studies have documented the AR statistics detected by TECA-BARD and Tempest are quite different from 
the statistics detected by other algorithms according to AR Tracking Method Intercomparison Project (O’Brien 

Figure 6. The time of emergence of extreme daily integrated water vapor transport (IVT), defined as the 95th percentile of daily IVT from all ensemble members in 
each individual season.
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et al. (2021)). One key difference is the implementation of the time-dependent IVT threshold in Tempest and 
TECA-BARD. Specifically, Tempest uses a Laplacian operator to identify the local maximum of IVT while 
TECA-BARD constrains the total planetary area that ARs can cover. These thresholds are calculated inde-
pendently at each time step. As the climate warms, the change in IVT difference between the core of an AR and 
its environment is not as big as the change in the background IVT. Thus, what Tempest detects is dominated by 
the meridional shift of storm tracks (i.e., the local maximum of eddy kinetic energy) instead of the increase of 
background moisture. This feature is evident in Figure S6 in Supporting Information S1, where we show the 
change in AR-day frequency as shown in Figure 1 except for Tempest. The implemented criterion is ∼300 kg 
m −1s −1 in IVT difference between the core of an AR and its surrounding environment. In Figure S6 in Support-
ing Information S1, we can see a clear poleward shift of the Southern Hemisphere storm track under increasing 
greenhouse gases. A similar feature is also found in Figure S7 in Supporting Information S1, where we apply 
TECA-BARD for AR detection. In Figure S7 in Supporting Information S1, the total area that ARs can cover is 
limited to ∼5% of the planetary area. The posterior probability of intensity threshold (i.e., pre-trained threshold 
based on experts' knowledge) is higher for the most extreme IVT (top 5%) due to stronger agreement by different 
experts (see Figure 5 in O’Brien, Payne, et al. (2020), O’Brien, Risser, et al. (2020)). Thus, only regions with 
the extreme IVT (e.g., top ∼5%) are more likely to be labeled as ARs. Along with the implemented criteria, the 
TECA-BARD elevates the minimum threshold of IVT as the climate warms due to the percentile calculated in 
space (in contrast to time). This time-dependent threshold limits the most salient AR changes to the regions with 
the strongest IVT and automatically removes the effect of increased background moisture.

The time-dependent thresholds also influence the estimation of AR ToE. In Figures 7a and 7b, we repeat the same 
ToE analysis, as in Figure 4, except for Tempest and TECA-BARD. We find that the AR-day frequency ToE is 

Figure 7. The December–February atmospheric river (AR)-day frequency time of emergence from SSP5-8.5 estimated by (a) Tempest with ∼300 kg⋅m −1s −1 threshold 
in integrated water vapor transport (IVT) difference between the core of an AR and its environment, (b) Toolkit for Extreme Climate Analysis, Bayesian AR Detector 
with the constraint that ARs occupy a maximum planetary area of ∼5%, (c) as in (a) but with a ∼100 kg⋅m −1s −1 threshold in IVT difference.
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delayed by ∼20 years in most regions relative to what is shown in Figures 4 and 5. This may not be a surprising 
result since the change in IVT is to first-order dominated by thermodynamics while the change in dynamics is 
relatively small (Gao et al., 2015). Implementation of time-dependent IVT thresholds substantially removes the 
contributions to changes from thermodynamics. To demonstrate how the time-dependent threshold influences the 
estimation of ToE, we conduct an additional test where we lower the time-dependent threshold in Tempest. The 
minimum difference between the core of an AR and its environment is lowered from ∼300 to ∼100 kg m −1s −1. 
By lowering the threshold, we allow ARs to grow in terms of area with the increase of background moisture. 
In Figure 7c, we can find the estimated ToE is nearly identical to the AR ToE based on Mundhenk et al. (2016) 
(Figure 4a) as well as the ToE of daily extreme IVT (Figure 6). This suggests that we can restore the thermody-
namic components by lowering the time-dependent thresholds. Given the public interest in knowing the projected 
change in hydrological extremes, and the adaptation of infrastructure to the historical climate, considering the 
contributions from both dynamics and thermodynamics seems appropriate. With that said, Figure 7 demonstrates 
that detection algorithms with time-independent threshold still may fit this purpose and provide a reasonable 
timeline for mitigation and adaption when appropriate AR detection thresholds are chosen.

4. Conclusions and Remarks
Identifying the time when anthropogenically forced AR changes emerge from the noise of internal climate vari-
ability may benefit many sectors of society, including policy makers, water resource management, and disaster 
preparedness. However, different SSPs and user-defined thresholds in AR detection algorithms introduce addi-
tional uncertainty to the quantitative estimation of AR warming response. In this study, we leverage a large 
ensemble of warming simulations generated by a GFDL next-generation climate model, SPEAR, to explore the 
AR response to global warming and to determine when the forced response emerges from the background inter-
nal climate variability. We show that some highly populated extratropical regions, such as West Coast of North 
America and Western Europe may expect detectable changes in AR statistics relative to 1,920 levels before 2060 
(1921 is the year with the lowest anthropogenic influence that we have available). This result is robust across 
different SSPs and time-independent thresholds.

Our analysis focuses on the AR detection method of Mundhenk et  al.  (2016), which uses time-independent 
thresholds based on the historical climate for AR detection, but we also analyze results from two other AR 
detection methods that use time-varying thresholds, which generally lead to a later ToE. The appropriate choice 
of AR detection method may depend on the application. If we assume that societal adaptation to the increase in 
background moisture and the associated increase in IVT is slow, then the time-independent thresholds of Mund-
henk et al. (2016) may provide a more accurate characterization of the societal impacts of changing AR statistics. 
However, we also show that it is possible to reconcile differences among the detection algorithms by using lenient 
thresholds for the methods with time-varying thresholds. In these cases, the optimal thresholds for AR detection 
requires further study and may depend on the application.

We further examine a computationally efficient approach proposed by Thompson et al. (2015) and demonstrate 
the internal variability in a large ensemble of warming simulation can be quantified to a high degree of accuracy 
from the statistics of unforced components. One important application of the above conclusion is that we can esti-
mate the ToE of AR changes with a single ensemble member or, in principle, with the single realization of nature.

The results of this study lead to a few interesting questions, which deserve further exploration in the future. First, 
since our results demonstrate that parametric fitting with a single ensemble member can capture the ensemble 
mean AR-day frequency changes with reasonable margins of error, can we reach similar conclusions, including 
a stable estimation of AR ToE, with different CMIP5/CMIP6 models? The sensitivity of AR warming response 
to model physics deserves exploration. Second, most previous research has shown that IVT response to global 
warming is dominated by thermodynamics (i.e., the change in specific humidity due to the change in temperature) 
while the dynamics plays a modest role. Deser et al. (2016) and Lehner et al. (2017) have used dynamical adjust-
ment to isolate the dynamical components of projected climate changes. They demonstrate that internal climate 
variability over the extratropics is dominated by dynamical components while the anthropogenically forced 
response is closely tied to the thermodynamic component. Therefore, an open question is whether a dynamically 
adjusted AR data set can constrain uncertainty further and reaffirm the ToE estimates in our study. The result also 
can give us additional insights into the underlying mechanisms of the AR response to global warming.
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Data Availability Statement
[Dataset] The data supporting the analysis in the main text is available at https://doi.org/10.5281/zenodo.6366550 
(Tseng, 2022) and https://www.gfdl.noaa.gov/spear_large_ensembles/ (Delworth et al., 2020).
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